Monthly Archives: November 2016

Influence on organizational dynamics

Jay W. Forrester SM ’45, professor emeritus in the MIT Sloan School of Management, founder of the field of system dynamics, and a pioneer of digital computing, died Nov. 16. He was 98.

Forrester’s time at MIT was rife with invention. He was a key figure in the development of digital computing, the national air defense system, and MIT’s Lincoln Laboratory. He developed servomechanisms (feedback-based controls for mechanical devices), radar controls, and flight-training computers for the U.S. Navy. He led Project Whirlwind, an early MIT digital computing project. It was his work on Whirlwind that led him to invent magnetic core memory, an early form of RAM for which he holds the patent, in 1949.

MIT Sloan Professor John Sterman, a student, friend, and colleague of Forrester’s since the 1970s, points to a 2003 photo of Forrester on a Segway as an illustration of his work’s lasting impact.

“He really is standing on top of the fruits of his many careers,” Sterman said. “He’s standing on a device that integrates servomechanisms, digital controllers, and a sophisticated feedback control system.”

“From the air traffic control system to 3-D printers, from the software companies use to manage their supply chains to the simulations nations use to understand climate change, the world in which we live today was made possible by Jay’s work,” he said.

Systems dynamics: A new view of management

It was after turning his attention to management in the mid-1950s that Forrester developed system dynamics — a model-based approach to analyzing complex organizations and systems — while studying a General Electric appliance factory. An MIT Technology Review article explores how he sought to combat the factory’s boom-and-bust cycle by examining its “weekly orders, inventory, production rate, and employees.” He then developed a computer simulation of the GE supply chain to show how management practices, not market forces, were causing the cycle.

Forrester’s “Industrial Dynamics” was published in 1961. The field expanded to chart the complexities of economies, supply chains, and organizations. Later, he cast the principles of system dynamics on global issues in “Urban Dynamics,” published in 1969, and “World Dynamics,” published in 1971. The latter was an integrated simulation model of population, resources, and economic growth. Forrester became a critic of growth, a position that earned him few friends.

How smarter computers are remaking our world

Surviving breast cancer changed the course of Regina Barzilay’s research. The experience showed her, in stark relief, that oncologists and their patients lack tools for data-driven decision making. That includes what treatments to recommend, but also whether a patient’s sample even warrants a cancer diagnosis, she explained at the Nov. 10 Machine Intelligence Summit, organized by MIT and venture capital firm Pillar.

“We do more machine learning when we decide on Amazon which lipstick you would buy,” said Barzilay, the Delta Electronics Professor of Electrical Engineering and Computer Science at MIT. “But not if you were deciding whether you should get treated for cancer.”

Barzilay now studies how smarter computing can help patients. She wields the powerful predictive approach called machine learning, a technique that allows computers, given enough data and training, to pick out patterns on their own — sometimes even beyond what humans are capable of pinpointing.

Machine learning has long been vaunted in consumer contexts — Apple’s Siri can talk with us because machine learning enables her to understand natural human speech — yet the summit gave a glimpse of the approach’s much broader potential. Its reach could offer not only better Siris (e.g., Amazon’s “Alexa”), but improved health care and government policies.

Machine intelligence is “absolutely going to revolutionize our lives,” said Pillar co-founder Jamie Goldstein ’89. Goldstein and Anantha Chandrakasan, head of the MIT Department of Electrical Engineering and Computer Science (EECS) and the Vannevar Bush Professor of Electrical Engineering and Computer Science, organized the conference to bring together industry leaders, venture capitalists, students, and faculty from the Computer Science and Artificial Intelligence (CSAIL), Institute for Data, Systems, and Society (IDSS), and the Laboratory for Information and Decision Systems (LIDS) to discuss real-world problems and machine learning solutions.

Barzilay is already thinking along those lines. Her group’s work aims to help doctors and patients make more informed medical decisions with machine learning. She has a vision for the future patient in the oncologist’s office: “If you’re taking this treatment, [you’ll see] how your chances are going to be changed.”