Learns to recognize sounds of computer

In recent years, computers have gotten remarkably good at recognizing speech and images: Think of the dictation software on most cellphones, or the algorithms that automatically identify people in photos posted to Facebook.

But recognition of natural sounds — such as crowds cheering or waves crashing — has lagged behind. That’s because most automated recognition systems, whether they process audio or visual information, are the result of machine learning, in which computers search for patterns in huge compendia of training data. Usually, the training data has to be first annotated by hand, which is prohibitively expensive for all but the highest-demand applications.

Sound recognition may be catching up, however, thanks to researchers at MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL). At the Neural Information Processing Systems conference next week, they will present a sound-recognition system that outperforms its predecessors but didn’t require hand-annotated data during training.

Instead, the researchers trained the system on video. First, existing computer vision systems that recognize scenes and objects categorized the images in the video. The new system then found correlations between those visual categories and natural sounds.

“Computer vision has gotten so good that we can transfer it to other domains,” says Carl Vondrick, an MIT graduate student in electrical engineering and computer science and one of the paper’s two first authors. “We’re capitalizing on the natural synchronization between vision and sound. We scale up with tons of unlabeled video to learn to understand sound.”

The researchers tested their system on two standard databases of annotated sound recordings, and it was between 13 and 15 percent more accurate than the best-performing previous system. On a data set with 10 different sound categories, it could categorize sounds with 92 percent accuracy, and on a data set with 50 categories it performed with 74 percent accuracy. On those same data sets, humans are 96 percent and 81 percent accurate, respectively.

“Even humans are ambiguous,” says Yusuf Aytar, the paper’s other first author and a postdoc in the lab of MIT professor of electrical engineering and computer science Antonio Torralba. Torralba is the final co-author on the paper.

“We did an experiment with Carl,” Aytar says. “Carl was looking at the computer monitor, and I couldn’t see it. He would play a recording and I would try to guess what it was. It turns out this is really, really hard. I could tell indoor from outdoor, basic guesses, but when it comes to the details — ‘Is it a restaurant?’ — those details are missing. Even for annotation purposes, the task is really hard.”